
 

Verilog a Hardware DescriptionLanguage
HDL

originally invented in early 1980s
for simulation ofdiscrete component networks

Verilog as synthesis f verification logic

Originally owned by cadence INC

but made available in public domain 1990

VHDL originally from DoD military
for Asic application specific integrated

circuits production
VHDL allows very specific details of everything

down to hardware level

ex transistor rise times etc

it is too detailed Verilog is easier to
learn

Verilog is used to describe cirruits



For example here's an FPGA chip with
inputs s outputs

inputs outputs

Inside you want to instantiate a circuit
this is your Top level linen it or
module

Verilog code q
arbitrary name

module Topcinpts outputs
whites

D

and module

Inputs these are inputs FRoy somewhere

Outputs these drive signals I somewhere
will discuss external to FPGA later

specifying inputs outputs



old way
name the input A B C D
and the output E

module TOP A B C D E

input A B C D
output Ei

end module

lets code this cirtuit

A

ETD

we have 3 AND gates

Verilog use data type wire to specify
connections like a real wire

that connects components on a

cir lait board



module TOP A B C D E

input A B SD
output E
wine A B C D or

wine A
wine B

wire E wins D

now we need a wire to lonneet gates
to

wire Cl

wire C2

next perform login using operators

S AND

I OR
a XOR

n NOT

and use assign to perform logic

assign Ci ASB

assign 12 CSD



shortint
wine C1 ASB

implicit assignwine 12 C S D
or

wine C 1 C2

Cl ASB
C2 a CSD

both are ok I method is used to keep
declaration together separated for
assignments

Then for output E

assign E CI S C2

code

module TOP A B C D E

input A B C D
output E
wire A B C D
wire Ei



wire Clif

assign
Ci ASB

assign 12 CSD

assign E Ci S C

end module

Sub circuits lets put the 1st 2 AND

gates into a sub circuit

É
SUB

7 É
z suis f
I

subliriuit name is sub i there are 2 here

code is



module SUB a b c

input a b
output C

assign
c a Sb

and module

now I place 2
copies of sub inside Top

and specify connections
have to specify a local name

for sub inside TOP

module TOP A B C D E

input A B SD
output E
wire A B C D
wire Ei follows order of argumenswire Cli in SUB

wine C2 I completely arbitrary
Sub C D C 2

end module



variation or instantiating subs

sub local 1 C a A b B e ICI
t

module It
ang name

this says convent A to a B to b ete
no longerdepends on order

note
assign

is mostly just for simulation

assign A BSC

means if B N C changes then ChangA

for making FPGA liriuits it's often
not melessary
exception for driving an output

Verilogmux
out

control if control 0 out in't
else out in 2



in verilog use a conditional

wire out

assign out control in 1 in 2

T T

115am gains
wire I O Ni

MSBY P LSB
then there are 2 wines NCO is LSB

NCI is MSB

YT.IT fftahs output of bee or lath

holds data

rig A

can think of a reg as a Def or a

driver that drives current

but mostly for DFFs



vail

I É
t

always follows D at

posedge of the clock elk

wire Di
rig Q

always posedge alk Q D

if we have 2 DFF's can use this syntax
wire D1 D2

rig Q1 Q2

always posedge alk Q1 D 1

always posedge alk 02 02

or
wire D1 D2

rig Q1 Q2

always posedge alk begin
I D i
Q2 L mat hid



problem take following

wire D j

rig Q1 Q2

away
Egge

alk begin
I D i

end

ambiguous

I
like computer
code

or

II
02

what we probably want is

I II edge Q1 D

2 2nd edge Q2 Q1

using Q1 D executing in series

OF Q1 a parallel



BLOCKING Q1 D evaluate

E QI continuously

NON BLOCKING Q1 D evaluate It

E QI then assign
all at once

ex

reg A B Ci
always posedge it k begin

A 1

B Ai

and
C 13

if this was a computer code then things
would happen sequentially
after C B they would all be

I

so each statement blocks the next one from

occurring until executed

In FPGA we want things to happen in parallel



so after I't clock A l

B

2nd A l
13 1

3d A I

13 1

1 1
each statement is evaluated and assigned
simultaneously and are non blocking

For programmable logic need to distinguish

BLOCKING Assignment use

alway for combinatorial logic
NON BLOCKING Assignment use SI

always forsequential login

rule for DFF inside always we



ex circuit Top

A ra
Ck

DB RB

D
D

D
E

Do
F

module TOP
H declare in out
input A B elk

output C D E F

neg ra ri

always posedge alk begin
race A
RB L B

end
1k
combinatorial logic



I

assign
c rASrB

assign D rat rB
optional assign

assign E rA rBj
assign

F ra 3not optional drives
endmodule output

conditionals a wire that determines
an output depending on if
it is o or l

ex x is a wire binary
if X is 0 y 2 else y 5

wire Xj
wire 2 03y need 3 bits toholdvalues
if x 9 5

else g 2

19 9 9,0 i

or y 90,403

alternative the false

g x
St 24



Math verilog synthesizer can implement
math

ex wire i o a b

wire 2 03C
c a bj synthesizer will build

the logic to implement
will also do this for ti I


